Real World Applications of Machine Learning Techniques over Large Mobile Subscriber Datasets
نویسندگان
چکیده
Communication Service Providers (CSPs) are in a unique position to utilize their vast transactional data assets generated from interactions of subscribers with network elements as well as with other subscribers. CSPs could leverage its data assets for a gamut of applications such as service personalization, predictive offer management, loyalty management, revenue forecasting, network capacity planning, product bundle optimization and churn management to gain significant competitive advantage. However, due to the sheer data volume, variety, velocity and veracity of mobile subscriber datasets, sophisticated data analytics techniques and frameworks are necessary to derive actionable insights in a useable timeframe. In this paper, we describe our journey from a relational database management system (RDBMS) based campaign management solution which allowed data scientists and marketers to use hand-written rules for service personalization and targeted promotions to a distributed Big Data Analytics platform, capable of performing large scale machine learning and data mining to deliver real time service personalization, predictive modelling and product optimization. Our work involves a careful blend of technology, processes and best practices, which facilitate manmachine collaboration and continuous experimentation to derive measurable economic value from data. Our platform has a reach of more than 500 million mobile subscribers worldwide, delivering over 1 billion personalized recommendations annually, processing a total data volume of 64 Petabytes, corresponding to 8.5 trillion events.
منابع مشابه
Achieving Intelligence in Mobility Incorporating Learning Capabilities in Real-world Mobile Robots Achieving Intelligence in Mobility Incorporating Learning Capabilities in Real-world Mobile Robots Achieving Intelligence in Mobility Incorporating Learning Capabilities in Real-world Mobile Robots
This paper presents an integrated approach to the application of Machine Learning techniques for the enhancement of mobile robots' skills. It identi es the learning tasks that can be observed throughout a number of typical applications of mobile robots and puts those tasks into perspective with respect to both existing and newly developed learning techniques. The actual realization of the appro...
متن کاملMammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملSemi-supervised Learning for Real-world Object Recognition using Adversarial Autoencoders
For many real-world applications, labeled data can be costly to obtain. Semi-supervised learning methods make use of substantially available unlabeled data along with few labeled samples. Most of the latest work on semi-supervised learning for image classification show performance on standard machine learning datasets like MNIST, SVHN, etc. In this work, we propose a convolutional adversarial a...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1502.02215 شماره
صفحات -
تاریخ انتشار 2015